Observations on "A CEC/IJC/EC Workshop: Addressing Atmospheric Mercury: Science and Policy" December 13 and 14, 2001 John McDonald International Joint Commission BNS MEETING - WINDSOR, Ontario May 29 – 30/02 ## The Mercury Cycle ## Physical Properties of Hg⁰ and Some Hg Compounds | (tabular data from Schroeder and Munthe, 1998) | | | | | | | |--|----------------------------------|------------------------------------|-----------------------------------|---------------------------------|----------------------|------------------------------------| | Property | $\mathbf{H}\mathbf{g}^0$ | HgCl ₂ | HgO | HgS | CH ₃ HgCl | (CH ₃) ₂ Hg | | Melting Point
(°C) | -39 | 277 | decomp.
@ 500 | 584
(sublim.) | 167
(sublim.) | ? | | Boiling Point
(°C) | 357
@ 1 atm | 303
@ 1 atm | | | | 96
@ 1 atm | | Vapor Pressure
(Pa) | 0.180 †
@ 20° C | 8.99×10 ⁻³ ‡
@ 20° C | 9.20×10 ⁻¹²
@ 25° C | ? | 1.76
@ 25°C | 8.30×10 ³
@ 25° C | | Water Solubility
(g L ⁻¹) | 49.4×10 ⁻⁶
@ 20° C | 66
@ 20° C | 5.3×10 ⁻²
@ 25° C | ~2×10 ⁻²⁴
@ 25° C | ~5-6
@ 25°C | 2.95
@ 25° C | [†] Implies a saturation air concentration of about 14 mg per cubic meter at 1 atmosphere [‡] Implies a saturation air concentration of about 1 mg per cubic meter at 1 atmosphere #### Estimates of the Percent of Great Lakes Loadings Attributable to the Atmospheric Deposition Pathway | Pollutant | Lake Superior | Lake Michigan | Lake Huron | Lake Erie | Lake Ontario | |------------------------|--|--|------------------|---------------------|---| | DDT | 97ª | 98ª | 97ª | 22ª | 31ª | | Lead | 97ª; 64 ^b ; 69 ^d | 99ª | 98ª | 46ª | 73ª | | Mercury | 73 ^d | > 80 ^j | k | k | k | | PCB's | 90°; ~ 95°,c; 82° | 58ª | 78ª | 13ª | 7ª | | PCDD/F | ~100°
~80 ^f | 50-100°
(PCDD)
5-35° (PCDF)
88 ^f | 86 ^f | ~40 ^f | 5-35 (PCDD) ^e
< 5 (PCDF) ^e | | Benzo(a)pyrene | 96ª | 86ª | 80ª | 79ª | 72ª | | Hexachloro-
benzene | 99 ^f | 95 ^f | 96 ^f | > 17 ^f | 40^{f} | | Atrazine | 97 ^h | ~30g; 23h | ~20 ^h | ~10-20 ^h | ~5 ^h | | Mirex | k | k | k | k | ~5ª | #### References and Notes (a) Strachan and Eisenreich (1988), percentages of total inputs; (b) Hoff *et al.* (1996); (c) Net loss of PCB's to the atmosphere of 1600 kg/year; total non-atmospheric inputs of approximately 70 kg/year; (d) Dolan *et al.* (1993); (e) Pearson *et al.* (1998); (f) Cohen *et al.* (1995); (g) Rygwelski et al. (1999); (h) Schottler and Eisenreich (1997); (j) Mason and Sullivan (1997); (k) no estimates could be found # Preliminary Canadian Anthropogenic Emissions of Mercury by Sector, 1995 **Total: 11 tons** ## U.S Estimates of 1994-1995 Mercury Emissions by Sector Total: 158 tons #### Mercury Science/Policy Modeling Issue: Air Emissions Inventory | Reason for Importance: | The Good News: | The Bad News: | |--|--|--| | Important policy work/trend data Accurate Inventory crucial to Models | United States: Final Inventory exists for 1996: Draft inventory for 1999 Relatively good data for utility coal combustion Canada: Inventory exists for 1995; 2000 inventory under development Mexico: 1999 Inventory available Global inventory available for 1990, 1995 | Inventories are of unknown quality (utilities are exception) Very few speciated emissions measurements Inventories not transparent (except for Mexico) and not well documented – hard to find and fix problems | # Mercury: Atmospheric Chemistry # Global Emissions of Mercury (Total Hg 1995 - All sources (tonnes)) #### Estimated total wet deposition of mercury Contribution from various source regions, 1997 ## Mercury Science/Policy Modeling Issue: Atmospheric Fate and Transport Modeling | Reason for Importance: | The Good News: | The Bad News: | | |---|--|---|--| | Models help fill in the spatial and temporal gaps between measurements Models can support interpretation of measurements Models can provide estimates of source-receptor relationships; how much does each source region and source type contribute | Researchers around the workd are working on atmospheric mercury models (~10 groups in the U.S.; ~2 groups in Canada) Some are getting reasonable results compared to ambient measurements An atmospheric mercury model intercomparison study is underway in Europe, includes some North American researchers | Funding is scarce and competition is fierce; thus, collaboration is difficult Substantial uncertainty in atmospheric chemistry and other processes; little funding for research to improve this Emissions inventories (input) and ambient monitoring (evaluation)limited | | # Main Mercury Species Typical Ambient Air Concentrations | | Concentration Ng/m 3 | Temporal Scale | | |--|----------------------|--|------------------------| | Elementary
Mercury:
- Hg° | 1 - 3 | Global Lifetime:
Months to a year | | | Divalent
Mercury:
- HgCl ₂
- HgO | 0 - 0.1
? | Local/Regional
Lifetime:
hours to a day | | | Particulate
Mercury | 0.02 - 0.1 | Regional Lifetime: 1 –3 days Dr. P. K. Misra, Ontario Mir | istry of the Environme | ### Weighted Mercury Concentration in Precipitation Mercury Deposition Network (MDN), 1999 Decreasing trends: West to East / South to North #### **CAMNet TGM/MDN sites** ## Coral Springs Data Summary (12-06-00 to 03-31-01) | Analyte | Units | N | Mean | Standard Deviation | Maximum | |-----------------|--------------------|-----|------|--------------------|---------| | Hg^0 | ng m ⁻³ | 781 | 1.69 | 0.21 | 2.81 | | RGM | pg m ⁻³ | 781 | 4.2 | 6.4 | 66.8 | | O_3 | ppb | 771 | 21.7 | 13.9 | 76.0 | | NO | ppb | 769 | 7.2 | 11.9 | 102.5 | | NO_X | ppb | 769 | 19.2 | 17.8 | 136.5 | | SO_2 | ppb | 781 | 0.87 | 2.46 | 31.5 | ## Mauna Loa Monitoring Summary | Analyte | Units | N | Mean | Std Dev. | Minimum | Maximum | |-----------------|--------------------|-----|------|----------|---------|---------| | Hg^0 | ng m ⁻³ | 331 | 1.3 | 0.7 | 0.5 | 7.5 | | RGM | pg m ⁻³ | 331 | 126 | 89 | 0 | 381 | | Hg^{P} | pg m ⁻³ | 331 | 37 | 37 | 0 | 215 | | | Surf | ace | 100 M | leters | 1000 N | leters | |--------|-------|-----|-------|--------|--------|--------| | Flight | Hg(p) | RGM | Hg(p) | RGM | Hg(p) | RGM | | 1 | 23 | 90 | 5 | 22 | 0 | 0 | | 2 | 16 | 40 | 20 | 16 | 0 | 3 | | 3 | 16 | 132 | 0 | 17 | 0 | 3 | ## What Do We Know So Far ... - No evidence of the Atlantic Ocean as a source of RGM - Elevated levels of RGM observed at surface in Coral Springs, Fl only on impact by anthropogenic sources - High concentrations of RGM observed in marine free troposphere - suggest Hg⁰ oxidation mechanism aloft - Arctic Hg⁰ depletion events - surface level phenomenon - photo & snow mediated (halides) #### Mercury Science/Policy Modeling Issue: Ambient Air Monitoring | Reason for Importance: | The Good News: | The Bad News: | | | |---|---|--|--|--| | The air deposition pathway is critical to looking at ecosystem mercury contamination Empirical deposition estimates can be developed Allows for trend evaluation Supports model evaluation ("Ground Truthing") | MDN – (Wet Deposition) at a number of sites in U.S. and Canada MDN data are easy to obtain CAMNET – provides ambient air concentrations of Hg(0) and TGM at a number of locations | More dry deposition information needed Reactive gaseous mercury (RGM) is a key component of wet and dry deposition Now, only a few measurements of RGM A network of speciated ambient air measurements – RGM, HG(p), Hg(0) – with readily available data needed | | | In determining ultimate fate of mercury, further information needed on: - speciation (source and receptor) and chemical transformations - Hg(0) to RGM - contribution and interaction of all pathways (mass balance - air, water, sediment) Must account for the global burden Must model ultimate fate and human health impacts (driver) ## Website www.ijc.org/boards/iaqab #### Estimated total dry deposition of mercury: Contribution from various source regions -1997